Numerical Calculations Significant figures

The number of significant figures contained in any number determines the accuracy of the number. Use 3 significant figures for final answers. For intermediate steps, use symbolic notation, store numbers in calculators or use more significant figures, in order to maintain precision.

Example 1: If *d* = 3.2 in., *w* = 1.413 in., and *h* = 2.7 in., then

What is the volume of the block?

V = d * w * h = (3.2") * (1.413") * (2.7") = 12.208 in³ = 12 in³ How many sig figs should we report?

A)1 B)2 C)3 D)Infinite

Inner diameter

Precision

Chapter 2: Force vectors Main goals and learning objectives

Define scalars, vectors and vector operations and use them to analyze forces acting on objects

- Add forces and resolve them into components
- Express force and position in Cartesian vector form
- Determine a vector's magnitude and direction
- Introduce the dot product and use it to find the angle between two vectors or the projection of one vector onto another

Scalars and vectors

	Scalar	Vector
Examples	Mass, Volume, Time	Force, Velocity
Characteristics	It has a magnitude	It has a magnitude and direction
Special notation used in TAM 210/211	None	Bold font or vector symbol Ex: \mathbf{A} or \underline{A}

<u>Multiplication or division of a vector by a scalar</u>

(similar to ZF=m·a) $B = \alpha A$ if $\alpha = 2$, then B =. Imagning if $\alpha = -1$, then B =. Change direction by 190° ion

Generally, in Statics, we do two types of problems: · Determine a resultant Force (mag. & direction) · Resolve a force into components

